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Abstract: - Fermentation processes are characterized with non-linear and time-dependent parameters that make 
their parameter identification non-trivial task. Failure of conventional optimization methods to yield a 
satisfactory solution provokes the idea for some stochastic algorithms to be applied. As such, different 
modifications of simple genetic algorithms (SGA) have been investigated aiming to improve the model 
accuracy and the algorithm convergence time. For that purpose two new modifications of SGA are developed 
here. SGA realizations differ from each other in the sequence of implementation of the main genetic operators 
selection, crossover and mutation. A comparison of the herewith developed two modifications of SGA and 
standard SGA towards algorithm convergence time and model accuracy is presented for parameter 
identification of S. cerevisiae fed-batch cultivation. The influence of the most important genetic algorithm 
parameters, namely generation gap, crossover and mutation rates has been investigated, too. Both proposed 
modifications of SGA produce similar values of the optimization criterion, meanwhile being significantly faster 
than the standard SGA. Among the considered genetic algorithms parameters, generation gap influences the 
algorithm calculation time most significantly, saving up to 53% of the time without affecting the model 
accuracy. 
 

Key-Words: - Genetic algorithms, genetic operators, genetic algorithm parameters, parameter identification, 
fed-batch fermentation process. 

 
 

1 Introduction 
Fermentation processes (FP) underlie the production 
of pharmaceuticals, chemicals and enzymes, yeast, 
foods, beverages, etc. in various industry branches. 
That is why FP modeling and future optimal control 
are questions of continued interest. Meanwhile, the 
modeling and control of FP pose serious challenges 
to their researchers as they are complex, nonlinear 
dynamic systems with interdependent and time-

varying process parameters. An important step for 
adequate modeling of non-linear models of FP is the 
choice of a certain optimization procedure for model 
parameter identification. Failure of conventional 
optimization methods such as Nelder-Mead’s 
minimization, sequential quadratic programming, 
quasi-Newton algorithms (i.e. Broyden, Fletcher, 
Goldfarb and Shanno), etc. to yield a satisfactory 
solution [1, 2] provokes the idea for some stochastic 
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algorithms to be used. Different meta-heuristics 
methods can be applied to overcome the parameter 
estimation difficulties [3-5]. 

As a quite promising stochastic global 
optimization method, genetic algorithms (GA), 
originally presented by Holland [6], are widely 
applied to a variety of complicated cases [7-31]. 
Among a number of searching tools, GA are one of 
the methods based on biological evolution and 
inspired by Darwin’s theory of “survival of the 
fittest”. GA are directed random search techniques, 
based on the mechanics of natural selection and 
genetics. GA find the global optimal solution in 
complex multidimensional search space by 
simultaneously evaluating many points in the 
parameter space. They require only information 
concerning the quality of the solution and do not 
require linearity in the parameters. GA properties, 
like solving hard problems, noise tolerance, and 
being easy to interface and hybridize, make them 
suitable and more workable to different optimization 
problems, and parameter identification and 
optimization of fermentation processes, in particular 
[8, 23-31]. 

Standard SGA, originally presented in [6], 
searches a global optimal solution using three main 
genetic operators in a sequence: selection, crossover 
and mutation. This algorithm is here denoted as 
SGA-SCM (coming from selection, crossover, 
mutation). SGA-SCM starts with selection of 
chromosomes (a coded parameter set) representing 
better possible solutions according to their own 
objective function values. After that, crossover 
proceeds to form a new offspring. Mutation is then 
applied with determinate probability aiming to 
prevent all solutions from falling into a local 
optimum of the solved problem. GA terminate when 
some termination criterion is fulfilled, for example: 
1) generation number reached; 2) evolution time 
passed; 3) fitness threshold reached; 4) fitness 
convergence satisfied; 5) population convergence 
satisfied; 6) gene convergence satisfied, etc. In this 
investigation, GA terminates when a certain 
generation number has been reached. According to 
[7], the structure of the standard SGA-SCM could 
be shortly presented as shown in Fig. 1. 

Since the basic idea of GA is to imitate the 
mechanics of natural selection and genetics, one can 
make an analogy with the processes occurring in 
nature, saying that the probability that mutation 
takes place first and then comes crossover is 
comparable to the probability that both processes 
occur in a reverse order; or selection to be 
performed after crossover and mutation, no matter 
of their order. Following that idea, firstly 

implemented as a modified genetic algorithm  
SGA-CMS and applied to parameter identification 
of E. coli cultivation process [8], many 
modifications of SGA-SCM, concerning the 
sequence of execution of the main genetic operators, 
have been developed aiming to improve model 
accuracy and algorithm convergence time for the 
purposes of parameter identification of a fed-batch 
cultivation of S. cerevisiae [28-30]. SGA-CMS 
(crossover, mutation, selection), SGA-SMC 
(selection, mutation, crossover) and SGA-MCS 
(mutation, crossover, selection) have been proposed 
and thoroughly investigated in [30].  
Two modifications skipping mutation operator – 
SGA-SC (selection, crossover) and SGA-CS 
(crossover, selection) have been also developed and 
applied [28]. Following the idea that GA imitate 
natural processes, two new modifications that may 
possibly occur are herewith proposed – SGA-CSM 
(crossover, selection, mutation) and SGA-MSC 
(mutation, selection, crossover). 

 
Fig.1 Structure of standard SGA 

 

1. [Start]  
Generate random population of  
n chromosomes 

2. [Object function]  
Evaluate the object function of each 
chromosome in the populations 

3. [Fitness function] 
Evaluate the fitness function of each 
chromosome in the populations 

4. [New population] 
Create a new population by repeating 
following steps: 
4.1. [Selection] 

Select parent chromosomes from the 
population according to their fitness 
function 

4.2. [Crossover] 
Cross over the parents to form new 
offspring with a crossover probability  

4.3. [Mutation] 
Mutate new offspring at each locus 
with a mutation probability 

5. [Replace] 
Use new generated loop in an old 
population for a further run of the 
algorithm 

6. [Test] 
If the end condition is satisfied, stop and 
return the best solution in current 
population  

7. [Loop] 
 Go to step 2. 
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There are many operators, functions, parameters 
and settings in GA that could be specifically 
implemented in different problems [27-29]. In this 
study, three of the main GA parameters, namely 
generation gap (GGAP), crossover (XOVR) and 
mutation (MUTR) rates are investigated for both 
proposed SGA modifications. A very big GGAP 
value does not improve performance of GA, 
especially regarding how fast the solution will be 
found. Mutation is randomly applied with low 
probability, typically in the range 0.01 and 0.1.  
A higher XOVR introduces new strings more 
quickly into the population, while a low XOVR may 
cause stagnation due to the lower exploration rate. 
Thus and also according to some statements [32], 
the range of investigated GA parameters is chosen 
as presented in Table 1.  

 
Table 1. Range of investigated  
genetic algorithm parameters 

GGAP XOVR MUTR 

0.5 0.65 0.02 

0.67 0.75 0.04 

0.8 0.85 0.06 

0.9 0.95 0.08 

- - 0.1 

 
The aim of this paper is to propose and develop 

two new possible modifications of SGA, namely 
SGA-MSC and SGA-CSM. The influence of three 
of the main GA parameters, namely GGAP, XOVR 
and MUTR towards model accuracy and algorithm 
convergence time is thoroughly investigated.  
A comparison of two newly presented SGA 
modifications to the standard one SGA-SCM is 
performed for parameter identification of  
S. cerevisiae fed-batch cultivation. 
 
 

2 Description of Modified Simple 

Genetic Algorithms 
As one can see in Fig.1 and following the main 

idea GA to imitate the processes in nature, there is a 
possibility crossover (sub-step 4.1) to occur before 
selection (sub-step 4.2). That will lead to a new 
SGA modification, denoted here as SGA-CSM 
(crossover, selection, mutation). In such an 
algorithm the parental genes are combined during 
the crossover in order to form a new chromosome. 

After the reproduction, the fitness values for the 
offspring are calculated and the most fit individuals 
are selected to replace the parents. Newly created 
offspring can mutate by a bit changed, when the 
mutation operator is performed.  

In another possible performance the mutation 
operator occurs first, followed by selection and 
crossover. This leads to another new SGA 
modification, denoted here as SGA-MSC (mutation, 
selection, crossover). 

These two newly proposed SGA modifications 
are thoroughly investigated with respect to model 
accuracy and algorithm convergence time and 
applied to parameter identification of S. cerevisiae 
fed-batch cultivation. 
 

 

3 Parameter Identification 

of S. cerevisiae Fed-batch Cultivation 
Experimental data of S. cerevisiae fed-batch 
cultivation is obtained in the Institute of Technical 

Chemistry – University of Hannover, Germany [2]. 
The cultivation of the yeast S. cerevisiae is 
performed in a 2 l reactor, using a Schatzmann 
medium. Glucose in feeding solution is 35 g/l.  
The temperature was controlled at 30°C, the pH at 
5.5. The stirrer speed was set to 1200 rpm. Biomass 
and ethanol were measured off-line, while substrate 
(glucose) and dissolved oxygen were measured  
on-line.  

Mathematical model of S. cerevisiae fed-batch 
cultivation is commonly described as follows, 
according to the mass balance [2]: 
 

dX F
= µX - X

dt V
 (1) 

( )S in

dS F
= -q X + S - S

dt V
 (2) 

E

dE F
= q X - E

dt V
 (3) 

( )*
2

2 2
22

O

O L

dO
= -q X +k a O - O

dt
 (4) 

dV
= F

dt
 (5) 

 
where: 

X is the concentration of biomass, [g/l];  
S  –  concentration of substrate (glucose), [g/l];  
E  –  concentration of ethanol, [g/l];  
O2  –  concentration of oxygen, [%];  

*
2O   –  dissolved oxygen saturation 
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    concentration, [%];  
F  –  feeding rate, [l/h];  
V  –  volume of bioreactor, [l];  

2O

Lk a – volumetric oxygen transfer  
coefficient, [1/h];  

Sin  –  initial glucose concentration  
    in the feeding solution, [g/l]; 

µ  –  specific growth rate of biomass, [1/h]; 
qS  –  specific utilization rate of substrate, [1/h]; 
qE  –  specific utilization rate of ethanol, [1/h]; 

2Oq  – specific utilization rate  

   of dissolved oxygen, [1/h].  
All functions are continuous and differentiable. 
 
Considered here fed-batch cultivation of  

S. cerevisiae is characterized with keeping glucose 
concentration equal to or below to its critical level 
(Scrit = 0.05 g/l), sufficient dissolved oxygen  
O2 ≥ O2crit (O2crit = 18%) and availability of ethanol 
in the broth. This state corresponds to the so called 
mixed oxidative state (FS II) according to functional 
state modeling approach [33]. Hence, specific rates 
in Eqs. (1)-(5) are as follows: 

 

2 2S E

S E

S E
µ = µ + µ

S +k E +k
,  

2S

S

SX S

q =
µ S

Y S +k
,  

2E

E

EX E

µ E
q = -

Y E +k
, 

2 E OE S OSO = q q  Y + q Y ,  

(6) 

 
where:  

µ2S  is the maximum growth rate of  
    substrate, [1/h]; 

µ2E  – maximum growth rate of ethanol, [1/h]; 
kS – saturation constants of substrate, [g/l]; 
kE  – saturation constants of ethanol, [g/l];  
Yij  – yield coefficients, [g/g]. 
All model parameters fulfill the non-zero 

division requirement. 
 
As an optimization criterion, mean square 

deviation between the model output and the 
experimental data obtained during cultivation has 
been used: 
 

( )
2

Y
J = Y -Y * min→∑ , (7) 

 
where: 

Y is the experimental data;  
Y

* – model predicted data;  
Y = [X, S, E, O2]. 
 
Parameter identification of the model (1)-(6) has 

been performed using Genetic Algorithm Toolbox 

[34] in Matlab 7 environment. All the computations 
are performed using a PC Intel Pentium 4 (2.4 GHz) 
platform running Windows XP.  

The influence of the main GA parameters, 
namely GGAP, XOVR and MUTR has been 
examined for two newly introduced modifications of 
SGA. When one of the parameters GGAP, XOVR 
or MUTR is investigated according to the values 
given in Table 1, the basic values for the other two 
parameters are as follows, according to some 
statements [32]: GGAP = 0.9, XOVR = 0.85 and 
MUTR = 0.05. 

The values of the GA parameters except for 
GGAP, XOVR and MUTR and the type of genetic 
operators are presented in Table 2 and Table 3.  

 
Table 2. Genetic algorithms parameters 

Parameter Value 

NVAR 9 

PRECI 20 

NIND 20 

MAXGEN 100 

where: 
NVAR is the number of variables;  
PRECI  – precision of binary representation;  
NIND  – number of individuals;  
MAXGEN  – maximum number of generations.  

 
Table 3. Genetic algorithms operators 

Operator Type 

Encoding binary 

Reinsertion fitness-based 

Crossover double point 

Mutation bit inversion 

Selection roulette wheel selection 

Fitness function linear ranking 

 
GA terminate when a certain number of generations 
is reached, in this case 100. Scalar relative error 
tolerance RelTol is set to 1e-4, while the vector of 
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absolute error tolerances (all components) AbsTol – 
to 1e-5. 
 
 
3.1 Parameter Identification of S. cerevisiae 
Fed-batch Cultivation applying SGA-SCM 
At the beginning of this investigation the standard 
SGA-SCM has been applied for the purpose of 
parameter identification of S. cerevisiae fed-batch 
cultivation. The detailed examination of the 
influence of main genetic algorithm parameters 
GGAP, XOVR and MUTR has been performed 
[29], resulting to the statement that GGAP is the 
most sensitive one. Table 4 demonstrates the 
influence of GGAP in SGA-SCM to model accuracy 
and convergence time [29]. Because of the 
stochastic nature of the GA, several runs have been 
performed in order of representative results to be 
achieved. The calculated average values are 
presented here. 
 

Table 4. Influence of GGAP to model accuracy  
and convergence time in SGA-SCM 

GGAP 
SGA-SCM 

J t, s 

0.5 0.0223 43.812 

0.67 0.0221 52.797 

0.8 0.0221 67.922 

0.9 0.0222 70.625 

 
As it is seen from Table 4, the obtained 

optimization criterion values are very similar. 
Concerning convergence time, up to almost 38% 
can be saved using GGAP = 0.5 instead of 0.9 
without loss of accuracy. Exploring different values 
of crossover rate, no such time saving has been 
accomplished, but it should be pointed out that 
values of 0.85 for XOVR can be assumed as more 
appropriate. Only in mutation rate no tendency of 
influence can be drawn. Thus, after the investigation 
performed [29], genetic parameter values  
GGAP = 0.5, XOVR = 0.85 and MUTR = 0.1 are 
chosen. As a result of parameter identification, 
applying SGA-SCM, the values of model 
parameters are shown in Table 5.  
 

Table 5. Parameter identification with SGA-SCM 

Parameter SGA-SCM 

(at GGAP = 0.5) 

J 0.0221 

CPU time, s 46.5470 

µ2S, 1/h 0.94 

µ2E, 1/h 0.12 

kS, g/l 0.13 

kE, g/l 0.80 

YSX, g/g 0.41 

YEX, g/g 1.67 
2O

L
k a , 1/h 65.06 

YOS, g/g 494.89 

YOE, g/g 86.36 

 

Figs.2-5 present results from experimental data and 
model prediction with SGA-SCM (results not shown 
in [29]) respectively for the biomass, ethanol, 
substrate and dissolved oxygen. 
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Fig.2 Model prediction with SGA-SCM compared 
to experimental data, respectively, for the biomass 

 

WSEAS TRANSACTIONS on SYSTEMS Maria Angelova, Pedro Melo-Pinto, Tania Pencheva

E-ISSN: 2224-2678 260 Issue 7, Volume 11, July 2012



0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Fed-batch cultivation of S. cerevisiae

Time, [h]

E
th
a
n
o
l 
c
o
n
c
e
n
tr
a
ti
o
n
, 
[g
/l
]

data

model

 
Fig.3 Model prediction with SGA-SCM compared 
to experimental data, respectively, for the ethanol 
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Fig.4 Model prediction with SGA-SCM compared 
to experimental data, respectively, for the substrate 
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Fig.5 Model prediction with SGA-SCM  

compared to experimental data,  
respectively, for the dissolved oxygen 

 

 
3.2 Parameter Identification of S. cerevisiae 
Fed-batch Cultivation applying SGA-CSM 
On the next step of this investigation, the first of the 
herewith proposed two modifications of SGA-SCM, 
namely SGA-CSM, has been applied to parameter 
identification of S. cerevisiae fed-batch cultivation. 
The thorough investigation of three main genetic 
algorithms parameters GGA, XOVR and MUTR has 
been fulfilled for the newly presented here  
SGA-CSM, as performed in [29], Again GGAP has 
been proven as the most sensitive parameter towards 
convergence time and model accuracy, while 
exploring different values of crossover rate no such 
time saving is realized and no tendency of influence 
of mutation rate can be drawn. Thus, genetic 
parameter values GGAP = 0.5, XOVR = 0.85 and 
MUTR = 0.1 are chosen again. Table 6 
demonstrates only the results obtained for the most 
sensitive parameter GGAP when SGA-CSM has 
been applied. Again, because of the stochastic 
nature of the GA, several runs have been performed 
in order of representative results to be achieved.  
The calculated average values are presented here. 
 

Table 6. Influence of GGAP to model accuracy  
and convergence time in SGA-CSM 

GGAP 
SGA-CSM 

J t, s 

0.5 0.0224 36.281 

0.67 0.0223 39.203 

0.8 0.0223 60.313 

0.9 0.0235 55.921 

 
A comparison between the proposed 

modification SGA-CSM and standard SGA-SCM 
with respect to model accuracy and convergence 
time has been performed. As shown in Table 4 and 
Table 6, the optimization criterion values obtained 
with both kinds of SGA are very similar, varying 
between 0.0221 and 0.0235, which means about 6% 
divergence. This fact is promising since the new 
modification SGA-CSM still ensures high model 
accuracy. As proven again as the most sensitive 
among the three investigated parameters concerning 
the convergence time, GGAP = 0.5 instead of 0.9 
ensures saving of 35% computational time without 
loss of accuracy in SGA-CSM (for comparison – 
38% in SGA-SCM). In the same time, SGA-CSM is 
in all cases significantly faster than the standard 
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SGA-SCM. If one compares SGA-SCM and  
SGA-CSM at GGAP = 0.5, the herewith proposed 
SGA-CMS is 17% faster than SGA-SCM. 

Distinguished as the faster algorithm, SGA-CSM 
is here applied to parameter identification of  
S. cerevisiae fed-batch cultivation. As a result of 
parameter identification, the values of model 
parameters are shown in Table 7.  
 
Table 7. Parameter identification with SGA-CSM 

Parameter SGA-CSM 

(at GGAP = 0.5) 

J 0.0228 

CPU time, s 36.2190 

µ2S, 1/h 0.91 

µ2E, 1/h 0.12 

kS, g/l 0.09 

kE, g/l 0.70 

YSX, g/g 0.49 

YEX, g/g 2.38 
2O

L
k a , 1/h 125.39 

YOS, g/g 875.91 

YOE, g/g 98.84 

 
Figs.6-9 present results from experimental data and 
model prediction with SGA-CSM respectively for 
the biomass, ethanol, substrate and dissolved 
oxygen. 
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Fig.6 Model prediction with SGA-CSM compared 
to experimental data, respectively, for the biomass 
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Fig.7 Model prediction with SGA-CSM compared 
to experimental data, respectively, for the ethanol 
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Fig.8 Model prediction with SGA-CSM compared 
to experimental data, respectively, for the substrate 
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Fig.9 Model prediction with SGA-CSM  

compared to experimental data,  
respectively, for the dissolved oxygen 

 

WSEAS TRANSACTIONS on SYSTEMS Maria Angelova, Pedro Melo-Pinto, Tania Pencheva

E-ISSN: 2224-2678 262 Issue 7, Volume 11, July 2012



3.3 Parameter Identification of S. cerevisiae 
Fed-batch Cultivation applying SGA-MSC 

Further, the second one of the proposed here two 
modifications of SGA-SCM, namely SGA-MSC, 
has been applied to parameter identification of  
S. cerevisiae fed-batch cultivation. The thorough 
investigation of three main genetic algorithms 
parameters GGAP, XOVR and MUTR has been 
again performed for SGA-MSC as presented in [29], 
Again GGAP has been proven as the most sensitive 
parameter towards convergence time and model 
accuracy, while exploring different values of 
crossover rate no such time saving is realized and no 
tendency of influence of mutation rate can be 
drawn. Thus, similar to the other two SGA 
presented here, genetic parameter values  
GGAP = 0.5, XOVR = 0.85 and MUTR = 0.1 are 
chosen again. Table 8 demonstrates only the results 
obtained for the most sensitive parameter GGAP 
when SGA-MSC has been applied. Again, because 
of the stochastic nature of the GA, several runs have 
been performed in order of representative results to 
be achieved. The calculated average values are 
presented here. 

SGA-MSC still ensures high model accuracy.  
In the same time, SGA-MSC is faster even than the 
first modification SGA-CSM and hence faster than 
the standard SGA-SCM but only for the values of 
0.5 and 0.8 for GGAP. As in other modifications 
[28, 30], it is again demonstrated that there is no 
loss of model accuracy when the operator mutation 
is performed first. 

Using GGAP = 0.5 instead of 0.9 in SGA-MSC, 
53% of the convergence time of the algorithm can 
be saved without loss of model accuracy. But if one 
compares SGA-MSC with GGAP = 0.5, as 
distinguished as the fastest one, to the standard 
SGA-SCM with recommended GGAP = 0.9 [32], it 
is almost 2 times faster while saving the model 
accuracy.  

Table 8. Influence of GGAP to model accuracy  
and convergence time in SGA-MSC 

GGAP 
SGA-MSC 

J t, s 

0.5 0.0223 36.266 

0.67 0.0228 53.547 

0.8 0.0223 47.485 

0.9 0.0223 77.609 

 

Distinguished as the fastest algorithm,  
SGA-MSC is here applied to parameter 
identification of S. cerevisiae fed-batch cultivation. 
As a result of parameter identification, the values of 
model parameters are shown in Table 9. 

Figs.10-13 present results from experimental 
data and model prediction with SGA-MSC, 
respectively, for the biomass, ethanol, substrate and 
dissolved oxygen. 
 

Table 9. Parameter identification with SGA-MSC 

Parameter SGA-MSC 

(at GGAP = 0.5) 

J 0.0223 

CPU time, s 37.688 

µ2S, 1/h 0.91 

µ2E, 1/h 0.11 

kS, g/l 0.11 

kE, g/l 0.80 

YSX, g/g 0.44 

YEX, g/g 1.54 
2O

L
k a , 1/h 120.58 

YOS, g/g 874.40 

YOE, g/g 121.27 
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Fig.10 Model prediction with SGA-MSC compared 
to experimental data, respectively, for the biomass 
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Fig.11 Model prediction with SGA-MSC compared 
to experimental data, respectively, for the ethanol. 
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Fig.12 Model prediction with SGA-MSC compared 
to experimental data, respectively, for the substrate. 
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Fig.13 Model prediction with SGA-MSC  
compared to experimental data,  

respectively, for the dissolved oxygen. 

Presented in this investigation results from the 
application of newly presented here two 
modifications of SGA, namely SGA-CSM and 
SGA-MSC, as well as the standard SGA-SCM for 
parameter identification of S. cerevisiae fed-batch 
cultivation, show their effectiveness for solving 
complex nonlinear problems. 
 

4 Analysis and discussion 
To answer the spontaneously raised question of 

how the mere order of execution of the genetic 
operators can affect the algorithm convergence time, 
a detailed analysis has been performed of the time 
needed for execution of each operator in all three 
considered here SGA.  

In the implementation of SGA-SCM, the time for 
execution of the first operator, namely selection, is 
about 1.0421 sec, than followed by 0.047 sec for the 
execution of the crossover operator and 0.031 sec 
for the mutation operator. Totally, one generation 
step takes 3.7340 sec.  

In the implementation of SGA-CSM, the time for 
the execution of the first operator – crossover in this 
case, is about 1.0369 sec, than followed by  
0.047 sec for the execution of the selection operator 
and 0.031 sec for the mutation operator. Totally, one 
generation step takes 3.5620 sec, which is about 
0.172 sec (4.6%) faster than SGA-SMC.  

In the implementation of SGA-MSC, the time for 
the execution of the first operator – mutation in this 
case, is about 0.9912 sec, than followed by  
0.047 sec for the execution of the selection operator 
and 0.047 sec for the crossover operator. Totally, 
one generation step takes 3.5940 sec, which is about 
0.14 sec (3.7%) faster than SGA-SMC.  

The results of the above discussion are 
summarized in Table 10, presenting the time of 
execution of different genetic operators in standard 
SGA-SCM and both its modifications, considered in 
this investigation. 

 
Table 10. Time for the operators execution  

in different algorithms ([sec]) 

 SGA-

SMC 

SGA-

CSM 

SGA-

MSC 

selection 1.0421 0.047 0.047 

crossover 0.047 1.0369 0.047 

mutation 0.031 0.031 0.9912 

time for  
1 generation step 3.7340 3.5620 3.5940 

 
As seen from Table 10, each genetic operator is 

much slower (more than 20 times for selection and 
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crossover and more than 30 times for mutation) 
when it has to be performed first in the 
corresponding algorithm. Meanwhile, the mutation 
operator is relatively faster than the other two 
operators – in about 34%. These facts, 
superimposing the stochastic nature of GA, mean 
that merely reordering the operators can lead to a 
significant decrease of the algorithm convergence 
time. 

If one would like to go deeper in the analysis of 
the model accuracy degree, p-values are supplied in 
order to follow the experimental modelling 
techniques: p = 0.6015 for SGA-SCM, p = 0.9319 
for SGA-CSM and p = 0.8415 for SGA-MSC. 
Presented p-values prove to the researchers that 
there are differences between three considered 
algorithms even though values of objective function 
seem so close. Additionally, two-way analysis 
applying anova function in MATLAB has been 
performed for comparing the means of the degree of 
model accuracy of three considered here SGA at 
different values of GGAP. Fig.14 presents the 
results from the anova function implementation. 

 

 
Fig.14 Results from the anova function 
implementation for three kinds of SGA 

 
Obtained as a result from the anova function  

p-values, namely p = [0.3379 0.6047], show that 
none of the values of p small enough, hence, there 
are no significant differences between the three 
SGA considered here with respect of the degree of 
model accuracy. 

 

5 Conclusion 
In this investigation two newly presented 
modifications of SGA have been developed and 
thoroughly examined. The proposed algorithms are 
with exchanged sequence of the operators selection, 
crossover and mutation. The influence of some of 
the main GA parameters, namely generation gap, 
crossover and mutation rates, has been examined for 
the herewith considered SGA, aiming to improve 
the convergence time while preserving high model 
accuracy. Among the three investigated parameters, 
the generation gap is the most sensitive one with 
respect of the convergence time. As a “favourite” 
among the considered here SGA modifications, 
SGA-MSC has been distinguished. Using such 

algorithm up to almost 53% from the calculation 
time can be saved using GGAP = 0.5 instead of 0.9 
without loss of model accuracy. But if one compares 
SGA-MSC with GGAP = 0.5 to the standard  
SGA-SCM with recommended GGAP = 0.9, it is 
almost 2 times faster while saving the model 
accuracy. The investigation of the different values 
of crossover and mutation rates shows that no such 
time saving has been achieved but it should be 
pointed out that values of 0.85 for crossover rate can 
be assumed as more appropriate. All modifications 
of SGA considered here, employing such values of 
genetic algorithm parameters, show the 
effectiveness of GA for solving complex nonlinear 
problems. 

For the sake of completeness, the results 
obtained in applying both herewith proposed 
modifications have been compared to the results 
obtained with three other SGA modifications, 
thoroughly investigated in [29]. Among all five 
modifications of SGA-SCM, applying different 
order of three operators, SGA-CSM can be 
distinguished as the fastest, but not the most 
accurate one, followed by SGA-MCS [29] and 
SGA-MSC exhibits comparable values of objective 
value and convergence time. SGA-CMS is very 
close to the “leaders”, while only SGA-SMC is 
comparably “slow” to the standard SGA-SCM.  
As such, some tendency can be outlined, that 
execution of selection operator at the beginning 
leads to bigger convergence time for the purposes of 
fermentation process parameter identification.  
The same tendency has been observed in SGA-CMS 
applied to parameter identification of E. coli 
cultivation process [8]. 

The herewith introduced two new modifications 
of the standard SGA-SCM have been demonstrated 
for the purpose of fermentation process parameter 
identification. Since GA are a stochastic technique 
widely applied to various optimization problems in 
different areas, the proposed modifications might be 
of interest and may help researchers apply GA for 
solving complex problems. 
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